Allylidenetriphenylphosphorane as a Bifunctional Reagent: Synthesis of Cyclopentenones and α, β-Unsaturated Ketones with (3-(Alkoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane

Minoru Hatanaka, ${ }^{*}$ Yuichiro Himeda, ${ }^{1}$ Ritsuo Imashiro, Yasuhiro Tanaka, and Ikuo Ueda
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan

Received June 25, 1993°

Abstract

When (3-(ethoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane (6) was allowed to react with α-bromo ketones $8 \mathrm{a}-\mathrm{d}$ in dichloromethane in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ at room temperature, a $[3+2]$ annulation occurred and led to the formation of the corresponding 2 -ethoxycyclopentadienes 9 a -d in excellent yields. Similarly, bromo thioester 8 g underwent the annulation to give 4 -(ethylthio)cyclopentadiene 9 g . Secondary bromides 2 -bromo-3-pentanone and 2 -bromocyclohexanone also afforded tetrasubstituted cyclopentadienes 9 e and 9 f in moderate yields when 2 equiv of 6 was used. The annulation is believed to proceed through a sequence involving a stepwise alkylation at the γ position of 6 and an intramolecular Wittig reaction because of the fact that intermediate 11 was isolated. The resulting 2 -ethoxycyclopentadienes $9 \mathrm{a}-\mathrm{g}$ were converted quantitatively into the corresponding cyclopentenones $10 \mathrm{a}-\mathrm{g}$ upon mild acid treatment. Furthermore, allylidenetriphenylphosphorane underwenta carbon elongation at both ends of the three-carbon unit via an alkylationWittig reaction sequence. (3-(tert-Butoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane (7) reacted first with alkyl halides and then with aldehydes in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to give enol ethers 23a-f, which were converted into α, β-unsaturated ketones 20,21 , and $25 c-f$ by hydrolysis of the enol ether and then decarboxylation. In this way, shogaol (29), the pungent principle component of ginger, was conveniently synthesized starting from 2 -methoxy-4-methylphenol.

Allylidenetriphenylphosphoranes have two nucleophilic centers and react with various electrophiles at either the α or γ position depending on the electrophile and the substituents on the phosphorane. Aldehydes and ketones usually react at the α-position of allylidenephosphorane togive normal Wittig products, ${ }^{2}$ although there are several reports describing substitution at both the α and γ positions. ${ }^{3}$ Acylation occurs predominantly at the γ position, ${ }^{4}$ and the regioselectivity of the alkylation of the phosphorane with alkyl halides remains uncertain because there are only a few precedents. ${ }^{5}$
We have investigated an annulation reaction that takes advantage of the bifunctional nature of the conjugated phosphoranes. Although it is well documented that allylidenephosphorane reacts with α, β-unsaturated alde-

[^0]hydes to give cyclohexadienes, ${ }^{6}$ the synthetic utility of the phosphoranes in annulation reactions has been little explored. In a recent paper, we reported that the [3+2] annulation reaction of allylidenephosphoranes 1 with α-halo carbonyl compounds leads to the regioselective formation of cyclopentadienes with a variety of substitutents (eq 1). ${ }^{7}$ The formation of five-membered car-

bocycles has been intensely studied in recent years. ${ }^{8}$ In order to extend the scope and the utility of our [3+2] annulation reaction, we investigated use of an allylidenephoshorane having an alkoxy substituent at the 2 -position. We expected that the reactions of the phosphorane with α-halo ketones would lead to the formation of alkoxycyclopentadienes, which could be readily converted into cyclopentenones upon mild acid treatment (Scheme 1). The occurrence of the annulation reveals that the initial alkylation takes place preferentially at the γ

[^1]
position of the phosphorane; subsequent intramolecular Wittig reaction leads to the formation of the cyclopentadiene. This result prompted us to investigate carbon elongation at both ends of the three-carbon unit of the phosphorane by an alkylation-Wittig reaction sequence, which would lead to the formation of α, β-unsaturated ketones. This paper describes the details of the syntheses of cyclopentenones and α, β-unsaturated ketones via (3-(alkoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane. ${ }^{9}$

Results and Discussion

Preparation of Starting Allylidenephosphoranes. (3-(Ethoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane (6) has previously been prepared by either addition of ethyl acetate to (diethoxyvinylidene)phosphorane ${ }^{10}$ or acylation of (2-ethoxyallylidene)phosphorane with ethyl chloroformate. ${ }^{4 i}$ However, both procedures are inconvenient. We prepared allylidenephosphorane ethyl and tert-butyl esters 6 and 7 starting from ethyl enol ethers 2 and 3 of acetoacetic acid esters (eq 2). Bromination of 2 and 3 with NBS followed by treatment with triphenylphosphine gave phosphonium bromides 4 and 5 , respectively. Phosphoranes 6 and 7 were conveniently obtained as fine yellow crystals by treatment of 4 and 5 with an aqueous NaOH solution. These phosphoranes exist as a single isomer in CDCl_{3} solution. The $\mathrm{C}-1$ protons of 6 and 7 appeared at 4.88 and 4.61 ppm , respectively, in the ${ }^{1} \mathrm{H}$ NMR spectra. The low-field shifts are consistent with the $2 E$ configuration of 6 and 7 . Howe observed similar shifts for the 2 -methyl analogue prepared from 1 $(\mathrm{R}=\mathrm{Me}){ }^{11}$ In agreement with this assignment, 4 was

[^2]Scheme 2

a For $\mathrm{a}-\mathrm{g}$, see Table 2.
Table 1. Conditions for Annulation Reaction of 6 or 4 with Phenacyl Bromidea

entry	reagent (equiv)	base (equiv)	solvent	yield of $9 \mathrm{a} \%$
1	$6(1.0)$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.6)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	92
2	$6(1.0)$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	70
3	$6(1.0)$	DIPEA (1.2)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	85
4	$6(1.0)$	DIPEA (1.2)	THF	71
5	$6(1.0)$	DIPEA (1.2)	DMF	51
6	$6(1.0)$	t - $\mathrm{BuOK}(1.0)$	THF	83
7	$6(2.0)$		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	90^{b}
8	$4(1.0)$	DIPEA (2.3)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	62

${ }^{c}$ All reactions were carried outat $30^{\circ} \mathrm{C}$ for 48 h under $\mathrm{N}_{2} .{ }^{b}$ Isolated yield based on the amount of phenacyl bromide.

regenerated when a CDCl_{3} solution of 6 was treated with one drop of aqueous HBr .

Synthesis of Cyclopentenone. Phosphonium bromide 4 was first subjected to the annulation reaction with phenacyl bromide in a heterogeneous medium of saturated aqueous NaHCO_{3} and dichloromethane in a manner similar to that reported previously. ${ }^{7}$ However, no formation of ethoxycyclopentadiene was observed. Isolation of 2 from the reaction mixture indicated facile hydrolysis of phosphonium bromide 4 in the aqueous medium. The desired annulation did occur under anhydrous conditions (Scheme 2). Several of the reaction conditions used are listed in Table 1. When phosphorane 6 was allowed to react with phenacyl bromide at $30^{\circ} \mathrm{C}$ in the presence of a base, such as diisopropylethylamine (DIPEA) or $\mathrm{Cs}_{2}-$ CO_{3}, the expected ethoxycyclopentadiene 9 a was produced. The best results were obtained with 0.6 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}{ }^{12}$ as the base in dichloromethane (entry 1). Without base,

[^3]Table 2. Syntheses of 2-Ethoxycyclopentadienes 9 and Cyclopentenones 10

all reactions were carried out in dichloromethane at $30^{\circ} \mathrm{C}$ under N_{2}. Method A: in the presence of 0.6 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. Method B: 2 equiv of phosphorane 6. ${ }^{6}$ Isolated yield based on the amount of halide. ${ }^{c}$ Compounds $10 e$ and $10 f$ were obtained mainly in a trans form with over 95% selectivity.

2 equiv of phosphorane 6 gave a 90% yield of 9 a (entry 7). Furthermore, the annulation also occurred when phosphonium bromide 4 was treated with phenacyl bromide and 2.3 equiv of DIPEA in dichloromethane; a 62% yield of 9 a was obtained (entry 8). Cyclopentadiene 9 a was converted quantitatively into cyclopentenone 10a upon treatment with diluted aqueous HCl .
The annulation reaction is applicable to the preparation of a variety of 2 -ethoxycyclopentadienes, as illustrated in Table 2. Primary halides reacted with 6 in dichloromethane in the presence of 0.6 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to give good to excellent yields of the corresponding cyclopentadienes (Table 2, entries 1-4). Secondary halides also underwent the annulation, although reaction times longer than those required for primary halides were necessary. In these cases, improved yields were obtained when 2 equiv of phosphorane 6 were used in the absence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. In this way, a fused ring system could be constructed with 2-bromocyclohexanone (entry 8). Furthermore, α-bromo thioester also reacted with 6 to afford 4-(ethylthio)cyclopentadiene 9 g .

[^4]The resulting ethoxycyclopentadienes showed UV absorption maxima at $302-305 \mathrm{~nm}$ for the 4 -alkylcyclopentadienes and at 342 nm for 9 a due to the conjugated dienoic ester. In the ${ }^{1} \mathrm{H}$ NMR spectra of the cyclopentadienes, the C-3 olefinic protons were observed at 6.12-6.29 ppm for the 4 -alkylcyclopentadienes and at 6.90 ppm for 9 a . Furthermore, the 5 -methyl protons of 9 e appeared at 1.24 ppm as a doublet ($J=7.6 \mathrm{~Hz}$). These data indicate that the ethoxycyclopentadienes have the double bonds fixed at the 1 -and 3 -positions, in analogy with the corresponding 2-methylcyclopentadienes previously reported. ${ }^{7}$ Although the propensity of cyclopentadienes to undergo 1,5 -sigmatropic migration has been reported, ${ }^{13}$ the 2 -ethozycyclopentadienes prepared above are stable for at least several weeks at room temperature and resist the migration. For example, compound $9 b$ was recovered unchanged after being heated in refluxing toluene for 24 h .

The resulting ethoxycyclopentadienes underwent conversion into the corresponding cyclopentenones when treated with aqueous HCl (Table 2). Cyclopentenones 10 can be also produced in a one-pot procedure from phosphorane 6 without isolation of the cyclopentadienes

[^5]
Scheme 3

10
by treatment of the reaction mixture with aqueous HCl . In this way, 9a was obtained in 81% yield from 6.
In order to elucidate a plausible mechanism, phosphorane 6 was allowed to react with1 equiv of phenacyl bromide in chloroform at room temperature for 12 h . Preparative HPLC of the reaction mixture on a GPC column gave 9a (19%), 11 (31%), 4 (13%), and triphenylphosphine oxide (19%) together with recovered phenacyl bromide (22%) (eq 3). The structure of alkylated phosphonium bromide

$$
+4(13 \%)+P h_{3} P=O(19 \%)
$$

11 was determined by ${ }^{1} \mathrm{H}$ NMR. Compound 11 was quantitatively converted into 9a upon being shaken in dichloromethane with saturated aqueous NaHCO_{3} solution. These results indicate that the annulation is stepwise as shown in Scheme 3. The first step must be alkylation of the carbanion of the 1,4-dipolar resonance form of 6 to give 12, which transformed into the phosphorane by transylidation with 6 or an external base. The resulting phosphorane may be an equilibrium mixture of 13 and 14. ${ }^{14}$ Intramolecular Wittig reaction furnishes cyclopentadiene 9. The high yield of cyclopentadienes implies that the alkylation takes place predominantly at the γ-position of the phosphorane. In an effort to detect the α-alkylation product, compound 15 was isolated in 3% yield along with 76% yield of cyclopentadiene $10\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$

[^6]when p-chlorophenacyl bromide was allowed to react with 2 equiv of 6 in dichloromethane. Compound 15 may arise from initial alkylation at the α-position to form 16 and subsequent elimination of triphenylphosphine and HBr . Similar olefin formation from acylphosphorane and α-halo ketones has been reported to occur smoothly. ${ }^{15}$ Thus, the very low yield of 15 in comparison with that of the cyclopentadiene is further evidence for the highly regioselective alkylation at the γ-position of the phosphorane.

16
Synthesis of α, β-Unsaturated Ketone. Taking advantage of the highly regioselective γ-alkylation of 6 , we next investigated the synthesis of α, β-unsaturated ketones by the carbon elongation of both ends of the three-carbon unit of the phosphorane via an alkylation-Wittig reaction sequence. Alkylation of phosphorane 6 with benzyl bromide was best carried out in DMF at room temperature to give phosphonium bromide 17a, which was, without isolation, treated with t - BuOK and then benzaldehyde for 40 h at room temperature to afford 18a as a mixture of two isomers (66 and 18% yields) (Scheme 4). The olefinic protons of both isomers have large coupling constants ($J=16 \mathrm{~Hz}$) in the ${ }^{1} \mathrm{H}$ NMR spectra. The C-4 proton of the major isomer was observed at lower field than that of the minor isomer, probably because of the shielding effect of the neighboring ester group. ${ }^{16}$ Thus, the structures of the isomers were assigned as $(2 E, 4 E)$ $18 a$ and $(2 Z, 4 E)-18 a$ for the major and minor isomer, respectively. Hydrolysis of enol ethers ($2 E, 4 E$)-18a and $(2 Z, 4 E)-18$ a was accomplished by treatment with sulfuric acid on wet SiO_{2} in dichloromethane ${ }^{17}$ to give trans keto ester 19a as a keto-enol tautomeric mixture in 95 and 89% yields, respectively. A similar alkylation-Wittig reaction of 6 with benzyl bromide and hexanal gave 18 b as a mixture of the geometrically isomeric enol ethers. The mixture was converted quantitatively into keto ester 19b, which exists mainly in a keto form.

Heating 19a at $140^{\circ} \mathrm{C}$ with sodium chloride in wet DMSO ${ }^{18}$ accomplished the decarboxylation and gave the desired α, β-unsaturated ketone 20 in 52% yield. However, attempted decarboxylation of 19 b in a similar manner resulted in the attendant formation of β, γ-unsaturated ketone 22 (13%) along with 21 (40%).

Finally, a convenient route to α, β-unsaturated ketones from phosphorane tert-butyl ester 7 was established (Scheme 5). In a one-pot procedure, phosphorane 7 was allowed to react with bromides in DMF at room temperature for 24 h , and then the mixture was treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and hexanal at $60^{\circ} \mathrm{C}$ for 24 h . The resulting enol ethers 23 were hydrolyzed with wet SiO_{2} to give trans keto esters 24. Treatment of 24 with trifluoroacetic acid and decarboxylation of the resulting acid gave the correspond-

[^7]Scheme 4

aq. $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ on SiO_{2} $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{r}, 2 \mathrm{~d}$

${ }^{a}$ For a-f, see Table 3.
ing trans α, β-unsaturated ketones. Representative examples are listed in Table 3. In this way, 24b gave 21 exclusively without attendant formation of 22. Thus, allylidenetriphenylphosphorane 7 was alkylated predominantly at the γ-position with various alkyl halides to provide a convenient route to α, β-unsaturated ketones. The reactive halides included activated alkyl bromides and saturated alkyl iodides. The use of the corresponding saturated alkyl bromides gave poor yields of the alkylation products.

The method was applied to the synthesis of shogaol
(29), the pungent principle component of ginger (Scheme 6). ${ }^{19}$ 2-Methoxy-4-methylphenol (26) was converted into bromide 27 by treatment with tert-butyldimethylsilyl chloride followed by bromination. Bromide 27 was subjected to the alkylation-Wittig reaction sequence with 7 and hexanal in a manner similar to that described above to give keto ester 28 after hydrolysis. Treatment of 28 with trifluoroacetic acid and subsequent decarboxylation gave shogaol (29) in 44% overall yield from 27.

Conclusion

We have demonstrated that (2-ethoxyallylidene)triphenylphosphorane 6 undergoes [3 + 2] annulation reactions with α-bromo ketones under extremely mild conditions to give 2-ethoxycyclopentadienes in moderate to good yields and in a regioselective fashion. Subsequent mild acid treatment of the ethoxycyclopentadienes provides a new route to substituted cyclopentenones. In addition, we developed a new method for the synthesis of α, β-unsaturated ketones via an alkylation-Wittig reaction sequence on (ethoxyallylidene)triphenylphosphorane 7.

Experimental Section

General Methods. Melting points were obtained on a hot stage apparatus and are uncorrected. The NMR spectra of all compounds were recorded in CDCl_{3}. TLC was carried out on silica gel (Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was performed on Wakogel C-300. The organic layers were dried over $\mathrm{MgSO}_{4} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF were distilled from CaH_{2}. THF was distilled from sodium benzophenone ketyl. Anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ supplied by Aldrich was used.
(E)-(2-Ethoxy-3-(ethoxycarbonyl)-2-propenyl)triphenylphosphonium Bromide (4). Ethyl 4-bromo-3-ethoxy-2butenoate ($60.0 \mathrm{~g}, 0.253 \mathrm{~mol}$), prepared from ethyl 3-ethoxy-2butenoate (2) according to the literature method, ${ }^{20}$ was treated with triphenylphosphine ($66.4 \mathrm{~g}, 0.253 \mathrm{~mol}$) in dry benzene (300 mL) for 46 h at rt . The precipitate was collected by filtration and washed with benzene. Recrystallization from acetonitrileethyl acetate gave colorless crystals $(98.5 \mathrm{~g}, 78 \%$): mp 137.5$139.5^{\circ} \mathrm{C}(\mathrm{dec}) ;$ IR (KBr) $1680,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) δ $7.62-7.91(\mathrm{~m}, 15 \mathrm{H}), 5.64(\mathrm{bd}, J=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.16$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); MS (FAB) m/z 419 $\left(\mathrm{M}^{+}-\mathrm{Br}\right.$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BrO}_{3} \mathrm{P}: \mathrm{H}, 5.65 ; \mathrm{C}, 62.53: \mathrm{P}$, 6.20: Br, 16.00. Found: H, $5.62 ; \mathrm{C}, 62.57$; P, 6.06 ; Br, 15.98 .
(E)-(2-Ethoxy-3-(ethoxycarbonyl)-2-propenylidene)triphenylphosphorane (6). A solution of $\mathrm{NaOH}(2.64 \mathrm{~g}, 0.066$ mol) in water (150 mL) was added dropwise to a stirred, icecooled solution of $4(30.0 \mathrm{~g}, 0.060 \mathrm{~mol})$ in water $(700 \mathrm{~mL})$. The precipitate was collected by filtration, washed with water, and dried at $60^{\circ} \mathrm{C}$ in vacuo to yield yellow crystals ($24.6 \mathrm{~g}, 98 \%$): $\mathrm{mp} 166-167^{\circ} \mathrm{C}$ (lit. ${ }^{4 f} \mathrm{mp} 166^{\circ} \mathrm{C}$); IR (KBr) $1660 \mathrm{~cm}^{-1}{ }^{\text {; }}{ }^{\prime} \mathrm{H}$ NMR $(90 \mathrm{MHz}) \delta 7.24-7.85(\mathrm{~m}, 15 \mathrm{H}), 4.88(\mathrm{bd}, J=22.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
(E)-(2-Ethoxy-3-(tert-butoxycarbonyl)-2-propenylidene)triphenylphosphorane (7). tert-Butyl 4-bromo-3-ethoxy-2butenoate (bp $91-92^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}, 29.7 \mathrm{~g}, 0.112 \mathrm{~mol}$), prepared from tert-butyl 3-ethoxy-2-butenoate, ${ }^{21}$ was treated with triphenylphosphine ($30 \mathrm{~g}, 0.114 \mathrm{~mol}$) as described for 4. After evaporation of the solvent, the resulting crude phosphonium bromide syrup was dissolved in water (2 L) and filtered. The filtrate was adjusted to pH 12 with aqueous NaOH solution (1 M) . The precipitates were collected by filtration, washed with

[^8]Table 3. Synthesis of $\alpha_{\boldsymbol{p}} \beta$-Unsaturated Ketones from 7

entry	reagent		keto ester		α, β-unsaturated ketone	
	R1X	R ${ }^{2} \mathrm{CHO}$	no.	yield, ${ }^{\text {a }}$ \%	no.	yield, ${ }^{\text {b }}$ \%
1	$\mathrm{PhCH}_{2} \mathrm{Br}$	PhCHO	24a		20	85^{+}
2	$\mathrm{PhCH}_{2} \mathrm{Br}$	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CHO}$	24b	70	21	99
3	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{I}$	PhCHO	24 c	69	25 c	100
4	$n-\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{I}$	$n-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$	24d	67	25d	94
5	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	$n-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$	24.	61	25 e	81
6	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Br}$	$n-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$	249	68	251	88

${ }^{a}$ Isolated yield based on the amount of phorphorane 7. ${ }^{b}$ Isolated yield based on the amount of $24 .{ }^{c}$ Overall yield from 7.

water, and dried in vacuo. Recrystallization from dichlo-romethane-ethyl acetate gave yellow crystals ($34.2 \mathrm{~g}, 68 \%$): mp $173-174^{\circ} \mathrm{C}$; IR (KBr) $1650,1500 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) δ $7.30-7.70$ (m, 15 H), 4.61 (bd, $J=24.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.33 (d, $J=6.75$ $\mathrm{Hz}, 1 \mathrm{H}$) $), 3.66(\mathrm{q}, J=7.02 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.51(\mathrm{t}, J=$ $7.02 \mathrm{~Hz}, 3 \mathrm{H}$); MS (FAB) $m / z 447\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}: \mathrm{C}, 75.32 ; \mathrm{H}, 7.00 ; \mathrm{P}, 6.94$. Found: $\mathrm{C}, 75.32 ; \mathrm{H}, 7.23$; P, 6.71 .

Representative Procedures for the Preparation of $\mathbf{C y}$ clopentadienes. Method A (from 6). A mixture of 6 (419 mg , 1 mmol), halide (1 mmol), and $\mathrm{Cs}_{2} \mathrm{CO}_{5}$ ($195 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dichloromethane (20 mL) was stirred at $30^{\circ} \mathrm{C}$ under nitrogen. The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was passed through a short column of silica gel to remove triphenylphosphine oxide and further purified by flash chromatography (ethyl acetate:hexanes $=1: 10$). Method B (2 Equiv of 6). A mirture of 6 ($838 \mathrm{mg}, 2 \mathrm{mmol}$) and halide (1 mmol) in dichloromethane (20 mL) was stirred at $30^{\circ} \mathrm{C}$ under nitrogen. After removal of the solvent, the residue was chromatographed in a manner similar to that described for method A. Method C (from 4). In a manner similar to that described for method A, $4(500 \mathrm{mg}, 1 \mathrm{mmol})$ and halide (1 mmol) were allowed to react in the presence of $i-\mathrm{Pr}_{2} \mathrm{EtN}(0.5 \mathrm{~mL}, 2.3 \mathrm{mmol})$ in dichloromethane (10 mL).

These general procedures were used for the cyclopentadienes; time and yields are presented in Table 2. Physical properties were as follows:

Ethyl 2-ethoxy-4-phenyl-1,3-cyclopentadiene-1-carboxylate (9a): mp $59.5-60.5^{\circ} \mathrm{C}$ (hexane-ethyl acetate); IR (Nujol) $1696,1672,1611,1576 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 7.60-7.31$ (m , $5 \mathrm{H}), 6.90$ (bs, 1 H), 4.31 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.24(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.69(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33$ ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 167.72,164.06,152.48$, $134.55,128.82,128.72,125.56,119.88,105.23,67.07,59.25,38.13$, 15.22, 14.59; MS (EI) $m / z 258\left(\mathrm{M}^{+}\right)$; UV $\lambda_{\text {max }}$ (MeOH) 342 nm (15000). Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{H}, 7.02 ; \mathrm{C}, 74.40$. Found: H, 6.95; C, 74.57.

Ethyl 2-ethoxy-4-methyl-1,3-cyclopentadiene-1-carboxylate (9b): oil; IR (neat) 1692, 1672, 1622, $1555 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 6.23$ (bs, 1 H), $4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.18 (q, J $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{18} \mathrm{C}$ NMR (75 MHz) $\delta 168.17,163.95,153.86,121.57,103.66,66.70,58.90$, 42.06, 17.24, 15.22, 14.59; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ 196.1099, found 196.1081; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 302(11600), 231 \mathrm{~nm}(6100)$.

Ethyl 2-ethoxy-4-pentyl-1,3-cyclopentadiene-1-carboxylate (9c): oil; IR (neat) 1699, 1674, 1618, $1553 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}) \delta 6.23$ (bs, 1 H$), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{bs}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~m}$, 2 H), $1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) δ $168.10,164.07,158.91,120.47,103.52,66.67,58.96,40.40,31.68$, $31.58,28.71,22.48,15.24,14.61,14.00$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{O}_{3}$ 252.1724, found 252.1709; UV $\lambda_{\text {max }}$ (MeOH) 304 (5400), 237 nm (1900).

Ethyl 4-(3-chloropropyl)-2-ethoxy-1,3-cyclopentadiene-1-carboxylate (9d): $\mathrm{mp} 40-41^{\circ} \mathrm{C}$ (hexane-ethyl acetate); IR (neat) $1700,1678,1622,1558 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 6.29$ (bs, 1 H), 4.22 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dt}, J=1.4$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.98-2.06$ (m, 2H), $1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 167.63,163.92,156.10$, $121.53,104.02,66.98,59.05,44.15,40.40,31.61,28.68,15.22,14.57$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{ClO}_{2}$ 258.1022, found 258.1001; UV $\lambda_{\max }$ (MeOH) 302 (9000), 234 nm (4100).
Ethyl 2-ethoxy-4-ethyl-5-methyl-1,3-cyclopentadiene-1carboxylate (9e): oil; IR (neat) 1698, 1676, 1622, $1560 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-$ 4.29 (m, 2 H), 3.19 (q, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.46 (m, 2 H), 1.41 ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 3 H), $1.15(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{18} \mathrm{C}$ NMR (75 MHz) $\delta 167.61$, 166.45, 164.04, 117.42, 109.65, 66.72, 58.85, 45.42, 22.66, 15.33, 15.22, 14.58, 12.68; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} 224.1411$, found 224.1420; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 304 \mathrm{~nm}$ (11300).

Ethyl 2-ethoxy-5,6,7,7a-tetrahydro-4 \boldsymbol{H}-indene-1-carboxylate (9f): oil; IR (neat) $1699,1679,1622,1559 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}) \delta 6.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.19$ ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.94 (dd, $J=6.2,12 \mathrm{~Hz}, 1 \mathrm{H}$), $2.72(\mathrm{~m}, 1$ H), $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{dt}, J=5.5,13 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{bd}, J=13$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77$ (bd, $J=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{dq}$, $J=3.3,13,1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 168.19,163.94,162.37$, $115.69,108.73,66.64,58.63,49.31,33.34,29.51,28.83,24.56,15.04$, 14.43; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} 236.1411$, found 236.1422; UV $\lambda_{\text {max }}(\mathrm{MeOH}) 305$ (12 300), 237 (6800).

Ethyl 2-ethoxy-4-(ethylthio)-1,3-cyclopentadiene-1-carboxylate (9 g): mp $69-70^{\circ} \mathrm{C}$ (hexane-ethyl acetate); IR (Nujol) $1667,1593,1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 6.18$ (bs, 1 H), 4.21 ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.18 ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 (bs, 2 H), 2.91 $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H), $1.28\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 167.61$, 163.47, 153.28, 117.15, 102.82, 67.07, 59.05, 40.90, 26.47, 15.18, $14.58,13.77 ; \mathrm{MS}$ (EI) $m / z 242$ (M^{+}); UV $\lambda_{\text {max }}(\mathrm{MeOH}) 338$ (12500), 232 nm (10 100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{H}, 7.49 ; \mathrm{C}, 59.48$; S, 13.23. Found: H, 7.34; C, 59.21; S, 13.04.

Isolation of Intermediate 11. A solution of $6(420 \mathrm{mg}, 1$ mmol) and phenacyl bromide ($200 \mathrm{mg}, 1 \mathrm{mmol}$) in CHCl_{3} (20 mL) was stirred for 12 h at rt . The reaction mixture was separated by preparative HPLC on a GPC column (CHCl_{3}) to give 11 (191 $\mathrm{mg}, 31 \%$), 4 ($65 \mathrm{mg}, 13 \%$), 9a ($49 \mathrm{mg}, 19 \%$), phenacyl bromide
($44 \mathrm{mg}, 22 \%$ recovery), and triphenylphosphine oxide (50 mg , 31%). Compound 11: mp $160-161^{\circ} \mathrm{C}$ dec (dichloromethaneethyl acetate); IR (Nujol) 1753, 1688, $1582 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 7.99-7.41(\mathrm{~m}, 20 \mathrm{H}), 5.79(\mathrm{bd}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.80$ ($\mathrm{m}, 1 \mathrm{H}$), $4.51-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{bs}$, $1 \mathrm{H}), 3.60(\mathrm{ABq}, J=9.9 \mathrm{~Hz}$, separation of inner lines 14.8 Hz , $1 \mathrm{H}), 2.64$ (ABq, $J=8.9 \mathrm{~Hz}$, separation of inner lines 16.8 Hz , $1 \mathrm{H}), 1.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{34} \mathrm{BrO}_{4} \mathrm{P}$: C, 66.13; $\mathrm{H}, 5.55$; $\mathrm{Br}, 12.94 ; \mathrm{P}, 5.02$. Found: C, 66.09 ; $\mathrm{H}, 5.68 ; \mathrm{Br}, 12.88 ; \mathrm{P}, 5.11$.

Ethyl 6-(4-Chlorophenyl)-3-ethoxy-6-ox0-2,4-hexadienoate (15). By means of method B, 4-chlorophenacyl bromide (233 $\mathrm{mg}, 1.0 \mathrm{mmol}$) was allowed to react with $7(836 \mathrm{mg}, 2.0 \mathrm{mmol})$. Flash chromatography of the crude product gave 4 -(4-chloro-phenyl)-2-ethoxy-1,3-cyclopentadiene-1-carboxylate (222 mg , 76%) and 15 ($11 \mathrm{mg}, 3 \%$).

The cyclopentadiene: mp $100.5-101.5^{\circ} \mathrm{C}$ (hexane); IR (KBr) $1665,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}$), $7.35-$ 7.32 (m, 2 H), $6.88(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{15} \mathrm{C}$ NMR (90 MHz) $\delta 167.4,163.9$, $150.9,134.5,133.1,129.0,126.8,120.5,105.6,67.1,59.3,38.2,15.2$, 14.5; UV (MeOH) $\lambda_{\max } 346$ ($\epsilon 18000$), 277 ($\epsilon 5700$), 242 ($\epsilon 15000$) $\mathrm{nm} ; \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z} 292$ (M+). Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}: \mathrm{C}$, 65.64; H, 5.85; Cl, 12.11. Found: C, 65.73; H, 6.16; Cl, 12.20.

15: mp 118.5-119.5 ${ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) $1705,1625,1595$, $1580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 8.42(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$,), 7.92-7.89 (m, 2 H), 7.48-7.44 (m, 2 H), $7.40(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (90 MHz) $\delta 190.2,166.4,163.2,139.5,136.0,135.6,130.2,129.0,127.7$, 98.4, 64.2, $60.2,14.3,14.2$; UV (MeOH) $\lambda_{\max } 306$ ($\epsilon 17000$), 226 ($\epsilon 15000$) nm; MS (EI) $m / z 308\left(\mathrm{M}^{+}\right.$) Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{-}$ ClO_{4} : C, 62.24; H, 5.55; Cl, 11.48. Found: C, $62.20 ; \mathrm{H}, 5.41 ; \mathrm{Cl}$, 11.32.

Representative Procedure for the Preparation of Cyclopentenone 10. Cyclopentadiene 9 (1 mmol) was dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and layered with aqueous $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})$. The mixture was stirred for 12 h atrt. The aqueous layer was extracted with CHCl_{3}. The combined organic layers were washed with aqueous NaHCO_{3}, dried, and evaporated in vacuo. The crude product was purified by flash chromatography (ethyl acetate: hexanes $=1: 10$).

This general procedure was used for the cyclopentenones. Ethyl 4-methyl-2-oxo-3-cyclopentene-1-carboxylate (10b) showed spectral data identical to those reported. ${ }^{22}$ Physical properties of new compounds were as follows:

Ethyl2-oxo-4-phenyl-3-cyclopentene-1-carboxylate (10a): oil; IR (neat) $1737,1701,1600,1570 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 7.44-7.69(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{dd}, J=1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.62 (dd, $J=7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=1.5$, $3.0,18 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (ddd, $J=1.5,7.4,18 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}) \delta 201.38,173.48,168.92$, $133.23,131.67,128.92,126.96,125.19,61.63,52.19,32.60,14.13$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} 230.0942$, found 230.0931 .

Ethyl2-oxo-4-pentyl-3-cyclopentene-1-carboxylate (10c): oil; IR (neat) 1736, 1704, $1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 5.90$ (bs, 1 H), 4.21 (dq, $J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (dd, $J=7.2,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=18,2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=18$, $7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.36$ (m, 4 H), 1.29 (dt, $J=7.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}$), $0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (90 MHz) $\delta 202.16,183.09,169.16,127.46,61.58,52.33$, 35.58, 33.36, 31.46, 26.64, 22.38, 14.22, 13.91; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ 224.1411, found 224.1407.

Ethyl 4-(3-chloropropyl)-2-oxo-3-cyclopentene-1-carboxylate (10d): oil; IR (neat) 1737, 1704, $1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $5.94(\mathrm{bs}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.45-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{tt}, J=6.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.30 (t , $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{1 s} \mathrm{C}$ NMR (75 MHz) $\delta 201.65,180.96,168.93$, 127.78,61.60,52.28, 44.00, 35.61, 30.44, 29.63, 14.18; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClO}_{3} 230.0709$, found 230.0719 .

Ethyl 3-Ethyl-2-methyl-5-oxo-3-cyclopentene-1-carboxylate (10e). This compound was obtained in the trans form with over 95% selectivity: oil; IR (neat) $1735,1700,1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}) \delta 5.88(\mathrm{bs}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{bq}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.55$ (m, 2 H), $1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 201.11,187.79,169.10$, 126.21,61.51,60.93, 42.29, 24.18, 18.01, 14.20, 11.28; HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ 196.1099, found 196.1069.

Ethyl 2,4,5,6,7,7a-Hexahydro-2-0x0-1 \boldsymbol{H}-indene-1-carboxylate (10f). This compound was obtained in the trans form with over 95% selectivity: ${ }^{23}$ oil; IR (neat) $1735,1710,1624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43$ (dd, $J=4,13 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (bs, 1 H), 2.85 ($\mathrm{bd}, J=13 \mathrm{~Hz}, 1 \mathrm{H}$), $2.29(\mathrm{dt}, J=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{bd}$, $J=13 \mathrm{~Hz}, 1 \mathrm{H}$), $1.54(\mathrm{tq}, J=3,13 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{tq}, J=3,13$ $\mathrm{Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{dq}, J=3,13 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 201.34,184.22,169.23,124.97,61.48,59.33$, 45.94, 34.02, 30.89, 26.60, 25.03, 14.20; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ 208.1099, found 208.1067.

Ethyl 4-(ethylthio)-2-oxo-3-cyclopentene-1-carboxylate (10 g): oil; IR (neat) $1735,1694,1549 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 5.88$ (bs, 1 H), 4.23 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.52 (dd, $J=7.5,3.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.19 (ddd, $J=17.6,3.1,1,6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.95 (bd, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 197.69,180.25$, 168.91, 121.52, 61.74, 52.12, 35.44, 27.14, 14.20, 13.31; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ 214.0663, found 214.0652.

Ethyl 2-Benzyl-3-ethozy-5-phenyl-2,4-pentadienoate (18a). To a stirred solution of $6(836 \mathrm{mg}, 2 \mathrm{mmol})$ in DMF (4 mL) was added benzyl bromide (0.25 mL , 2.1 mmol) under Ar, and the mixture was stirred for 48 h at rt . t-BuOK (1 M in THF, 2.0 mL) was added to the solution. After 1 h , benzaldehyde ($0.22 \mathrm{~mL}, 2.1$ mmol) was added, and the mixture was warmed at $60^{\circ} \mathrm{C}$ for 24 h. After cooling, the mixture was poured into ice-water (20 mL) and extracted with ethyl acetate. The extract was washed with brine, dried, and evaporated in vacuo. The residue was passed through a short column of silica gel to remove triphenylphosphine oxide and further purified by flash chromatography (ether: hexanes $=3: 1$) to give $(2 E, 4 E)-18 \mathrm{a}(446 \mathrm{mg}, 66 \%)$ and $(2 Z, 4 E)$ 18 a ($125 \mathrm{mg}, 18.5 \%$).
($2 E, 4 E$)-18a: oil; IR (neat) $1695,1620,1580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}) \delta 7.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.52(\mathrm{~m}, 10 \mathrm{H}), 7.01$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$); UV (MeOH) $\lambda_{\text {max }} 314 \mathrm{~nm}(19,000), 234 \mathrm{~nm}(8,700)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} 336.1724$, found 336.1691.
($2 Z, 4 E$)-18a: oil; IR (neat) $1700,1610,1580 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\delta 7.41-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.12$ (d, J $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.99(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; UV (MeOH) $\lambda_{\max } 312 \mathrm{~nm}(29000)$, 229 nm (11000); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} 336.1724$, found 336.1718 .

Ethyl (E)-2-Benzyl-3-ox0-5-phenyl-4-pentenoate (19a). A suspension of silica gel (Wako gel C-200, 300 mg) in dichloromethane (1 mL) was treated with two drops of aqueous 15% sulfuric acid. To the suspension was added ($2 E, 4 E$)-18a (103 $\mathrm{mg}, 0.306 \mathrm{mmol}$), and the mixture was stirred for 64 h at rt until TLC showed complete disappearance of the starting material. The mixture was treated with $\mathrm{NaHCO}_{3}(30 \mathrm{mg})$ and filtered. The solid was washed well with dichloromethane, and the organic layers were dried and evaporated in vacuo. The crude product was purified by flash chromatography (ethyl acetate:hezanes = $1: 20$) to yield an oil ($89 \mathrm{mg}, 95 \%$) as a mixture of the keto-enol tautomers. Recrystallization from hexane gave colorless needles of enol 19a: mp 79-81 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1730,1640,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 12.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.55(\mathrm{~m}, 10 \mathrm{H})$, 6.96 (dd, $J=2.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (s, 2 H), $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}$: $\mathrm{C}, 77.90 ; \mathrm{H}, 6.54$. Found: $\mathrm{C}, 77.86 ; \mathrm{H}, 6.48$.

[^9]By means of the same procedure, $(2 Z, 4 E)$ - 18 a ($200 \mathrm{mg}, 0.59$ mmol) was converted into 19 a ($155 \mathrm{mg}, 89 \%$) as a mixture of the keto-enol isomers.

Ethyl (\boldsymbol{E})-2-Benzyl-3-ox0-4-decenoate (19b). By means of the procedure described for $18 \mathrm{a}, 6(2.09 \mathrm{~g}, 5.0 \mathrm{mmol})$ was allowed to react with benzyl bromide ($0.613 \mathrm{~mL}, 5.1 \mathrm{mmol}$) and then hexanal ($0.6 \mathrm{~mL}, 5.0 \mathrm{mmol}$). Flash chromatography of the crude product gave $18 \mathrm{~b}(1.36 \mathrm{~g}, 83 \%)$ as an oily mixture of the geometrical isomers. Enol ether 18 b ($400 \mathrm{mg}, 1.21 \mathrm{mmol}$) was treated with a suspension of silica gel (4 g) and aqueous 15% sulfuric acid (0.08 mL) in dichloromethane (10 mL) by means of the procedure described for 19 a to yield 19 b as an oil (355 mg , 97%): IR (neat) $1740,1690,1650,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 7.10-7.42(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J$ $=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1 H), 3.19 ($\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.06-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.00-1.62(\mathrm{~m}$, $9 \mathrm{H}), 0.77-1.00(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 302\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 75.46; H, 8.67. Found: C, 75.25; H, 8.55.
(E)-1,5-Diphenyl-1-penten-3-one (20) from Ethyl (E)-2-Benzyl-3-ox0-5-phenyl-4-pentenoate (19a). A mixture of 19a ($50 \mathrm{mg}, 0.61 \mathrm{mmol}$), sodium chloride (15 mg), and water (0.001 mL) in DMSO (0.1 mL) was heated at $140^{\circ} \mathrm{C}$ for 12 h . After cooling, the mixture was poured into water $(10 \mathrm{~mL})$ and extracted with ether. The extract was washed with brine, dried, and evaporated in vacuo. Flash chromatography of the crude product gave crystals ($20 \mathrm{mg}, 52 \%$): mp $54-56^{\circ} \mathrm{C}$ (pentane); IR (KBr) $1685,1660,1610 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz) $87.54(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.18-7.55$ (m, 12 H), 6.73 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (s, 4 H); ${ }^{18} \mathrm{C}$ NMR (67.5 MHz) $\delta 199.2,142.6,141.2,134.4,130.4$, 128.9, 128.7, 128.6, 128.4, 128.3, 128.2, 126.1, 126.0, 42.4, 30.1. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 86.41 ; \mathrm{H}, 6.82$. Found: $\mathrm{C}, 86.28 ; \mathrm{H}$, 6.71.
(E) -1-Phenyl-4-decen-3-one (21) from Ethyl (E)-2-Benzyl-3-0x0-4-decenoate (19b). By means of the procedure described for $20,19 \mathrm{~b}$ ($200 \mathrm{mg}, 0.66 \mathrm{mmol}$) was decarboxylated. Flash chromatography of the crude product gave 21 ($61 \mathrm{mg}, 40 \%$) and 1-phenyl- 5 -decen-3-one 22 ($20 \mathrm{mg}, 13 \%$).

21: oil; IR (liquid film) $1690,1665,1625 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 7.05-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dd, $J=15.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.83-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 2$ H), $1.38-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{18} \mathrm{C}$ NMR (67.5 MHz) $\delta 199.5,147.8,141.3,130.2,130.1$, 128.4, 128.3, 126.0, 41.6, 32.4, 31.3, 30.1, 27.7, 22.4, 13.9. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}$: C, $83.43 ; \mathrm{H}, 9.63$. Found: $\mathrm{C}, 83.18 ; \mathrm{H}, 9.34$.

22: oil; IR (liquid film) $1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 7.07-$ 7.39 (m, 5 H), 5.44-5.58 (m, 2 H), $2.30-2.60(\mathrm{~m}, 6 \mathrm{H}), 1.83-2.19$ (m, 2 H), 1.04-1.44 (m, 4 H), $0.76-1.04$ (m, 3 H); MS (EI) m / z $230\left(\mathrm{M}^{+}\right)$. Compound 22 was transformed into 21 upon treatment with a trace of HCl in a CDCl_{3} solution.

Representative Procedure for the Preparation of β-Keto Esters from (4-(tert-Butoxycarbonyl)-2-ethoxy-2-propenylidene)triphenylphosphorane (7). By means of the procedure described for 18a, 7 ($447 \mathrm{mg}, 1 \mathrm{mmol}$) was allowed to react with the halide (1.1 mmol) and then the aldehyde (1.0 mmol) with $\mathrm{Cs}_{2} \mathrm{CO}_{8}(326 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a base instead of $t-\mathrm{BuOK}$. The residue was passed through a short column of silica gel to remove triphenylphosphine oxide. The resulting crude enol ether was hydrolyzed with silica gel in a manner similar to that described for 19 a.

This general procedure was used for the β-keto esters; yields are presented in Table 3. Physical properties were as follows:
tert-Butyl (E)-2-Benzyl-3-oxo-4-decenoate (24b). This compound was obtained as a 6:1 mixture of the keto and enol forms: oil; IR (neat) $1725,1690,1670,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 $\mathrm{MHz}) \delta 13.00(\mathrm{~s}, 1 \times 1 / 7 \mathrm{H}$, enol H$), 7.05-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{dt}$, $J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \times 6 / 7 \mathrm{H}), 3.59(\mathrm{~s}, 2 \times 1 / 7 \mathrm{H}), 3.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \times 6 / 7$ $\mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.09-1.50(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) for the major keto form δ 194.0, 168.4, 149.5, 138.6, 128.9, 128.3, 126.4, 81.7,59.4, 34.0, 32.5, 31.2, 27.8, 27.6, 22.3, 13.9; MS (EI) m/z 330 (M+). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$: $\mathrm{C}, 76.33 ; \mathrm{H}, 9.15$. Found: C, $76.58 ; \mathrm{H}, 9.03$.
tert-Butyl (E)-3-Oxo-2-pentyl-5-phenyl-4-pentenoate (24c). This compound was obtained as a 5:1 mixture of the keto and enol tautomers: oil; IR (neat) $1730,1690,1665,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 12.90(\mathrm{~s}, 1 \times 1 / 6 \mathrm{H}$, enol H), $7.66(\mathrm{~d}, J=16.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.58$ (m, 5 H), 6.87 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (t, $J=7.5 \mathrm{~Hz}, 1 \times 5 / 6 \mathrm{H}), 1.78-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 1 \times 1 / 6 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \times 5 / 6 \mathrm{H}), 1.30-1.38(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(67.5 \mathrm{MHz}) \delta 194.8,169.3,143.6,134.4,130.6,128.9,128.4,124.2$, 81.6, 58.9, 31.6, 28.3, 27.9, 27.0, 22.4, 13.9; MS (EI) $m / z 316\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 75.91; $\mathrm{H}, 8.92$. Found: C, 75.85; H, 8.69.
t-Butyl (E)-3-Ox0-2-pentyl-4-decenoate (24d): oil; IR (neat) $1730,1695,1680,1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.94(\mathrm{dt}, J=$ $15.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J=15.8 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18-2.26 (m, 2 H), 1.70-1.93 (m, 2 H), 1.43 (s, 9 H), 1.28-1.50 (m, 12 H), 0.87 ($\mathrm{m}, 6 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) $\delta 169.3,148.9,128.3,81.4,58.0,32.5,32.2,31.3,28.1,27.8,27.7$, 26.9, 22.4, 13.9; MS (EI) $m / z 310$ (M+). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3}: \mathrm{C}, 73.50 ; \mathrm{H}, 11.04$. Found: C, $73.28 ; \mathrm{H}, 10.98$.
tert-Butyl (E)-2-ethyl-3-ox0-4-decenoate (24e): oil; IR (neat) $1735,1700,1680,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.95$ (dt, $J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.21(\mathrm{dt}, J=15.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-2.24 (m, 2 H), 1.83-1.90 (m, 2 H), 1.43 (s, 9 H), $1.30-1.51$ (m, 6 H), 0.91 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) $\delta 194.8,169.2,148.9,128.4,81.4,59.6,32.5,31.3,27.9,27.7,22.4$, 21.6, 13.9, 11.8. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3}$: $\mathrm{C}, 71.60 ; \mathrm{H}, 10.52$. Found: C, 71.36; H, 10.37.

Methyl (E)-3-(tert-butoxycarbonyl)-4-0x0-5-undecenoate (24f): oil; IR (neat) $1735,1690,1680,1630 \mathrm{~cm}^{-1} ;{ }^{1} H$ NMR (270 $\mathrm{MHz}) \delta 7.01(\mathrm{dt}, J=15.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}),, 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.90$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) $\delta 193.2,172.0,167.7$, $149.9,128.5,82.3,53.2,51.9,32.5,32.2,31.3,27.8,27.6,22.4,13.9$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 65.36; H, 9.03. Found: C, 65.51; H, 9.01.

Representative Procedure for the Preparation of α, β Unsaturated Ketone from Keto Ester 24. Keto ester 24 (1.0 mmol) was dissolved in trifluoroacetic acid $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the solution was stirred for 1 h at rt . The mixture was diluted with dry benzene (20 mL) and evaporated in vacuo. The residue was dissolved in dry benzene (20 mL) and evaporated in vacuo. The operation was repeated twice to remove the trifluoroacetic acid. The resulting crude acid was heated in refluxing benzene for 1 h . The solution was evaporated, and the crude product was purified by flash chromatography (ether:hexanes $=1: 3$).

This general procedure was used for the majority of the α, β unsaturated ketones; yields are presented in Table 3. (E)-1,5-Diphenyl-2-penten-3-one (20) and (E)-1-phenyl-4-decen-3-one (21) were identical with those obtained from the corresponding ethyl ester. (E)-5-Undecen-4-one (25 e) showed spectral data identical with those reported. ${ }^{24}$
(E) $-1,5$-Diphenyl-1-penten-3-one (20). Compound 20 was prepared from $7(447 \mathrm{mg}, 1.0 \mathrm{mmol})$, benzyl bromide (0.133 mL , 1.1 mmol), and benzaldehyde ($0.119 \mathrm{~mL}, 1.1 \mathrm{mmol}$) by means of the representative procedure for the preparation of keto esters. The resulting tert-butyl (E)-2-benzyl-3-oxo-5-phenyl-4-pentenoate (24a) was accompanied by 20, and, hence, the crude product was treated with trifluoroacetic acid to yield 20 (188 mg , 80% from 7).
(E)-1-Phenyl-1-nonen-3-one (25c): oil; IR (neat) 1690, 1660, $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 7.38-7.58$ ($\mathrm{m}, 6 \mathrm{H}$), 6.74 (d, J $=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.26-1.45(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(67.5 \mathrm{MHz})$ $\delta 200.5,142.2,134.6,130.3,128.8,128.2,126.2,40.9,31.6,28.9$, $24.3,22.4,14.0 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 316\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$: C, 83.29; H, 9.32. Found: C, 83.34; H, 9.01 .
(E)-6-Tetradecen-8-one (25d): oil; IR (neat) 1690, 1670, 1625 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.82(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.35(\mathrm{~m}, 2$ H), $1.55-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 10 \mathrm{H})$, $0.86-0.92$ (m, 6 H); ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) $\delta 201.2,147.5,130.6$, 40.4, 32.7, 31.9, 31.6, 29.3, 28.1, 24.6, 22.8, 22.7, 14.3, 14.2; MS (EI) $\mathrm{m} / \mathrm{z} 210\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 79.94 ; \mathrm{H}, 12.46$. Found: C, 80.16; H, 12.22 .

Methyl (E)-4-ox0-5-undecenoate (25f): oil; IR (neat) 1740, $1695,1675,1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.89(\mathrm{dt}, J=15.8$,

[^10]$6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ ($\mathrm{s}, 3 \mathrm{H}$), 2.89 (t, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.26(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) δ 198.1, 173.4, 148.1, 129.9, 51.8, 34.4, 32.4, 31.3, 27.8, 27.7, 22.4, 13.9; MS (EI) $m / z 212$ (M+). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 67.89 ; \mathrm{H}, 9.50$. Found: C, 67.62; H, 9.32 .

3-(tert-Butyldimethylsiloxy)-2-methoxybenzyl Bromide (27). To a solution of 2-methoxy-4-methylphenol ($26,5.0 \mathrm{~g}, 36.2$ mmol) and imidazole ($4.93 \mathrm{~g}, 72.4 \mathrm{mmol}$) in DMF (50 mL) was added tert-butyldimethylsilyl chloride ($6.0 \mathrm{~g}, 39.8 \mathrm{mmol}$), and the mixture was stirred for 2.5 h at rt . The mixture was poured into aqueous NaHCO_{3} solution and extracted with hexane. The extract was washed with water, dried, and evaporated in vacuo. The residue was distilled under reduced pressure to give 4-(tert-butyldimethylsiloxy)-3-methoxytoluene ($9.13 \mathrm{~g}, 93 \%$), bp 87-88 ${ }^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}$. A mixture of the resulting oil ($7.5 \mathrm{~g}, 29.7 \mathrm{mmol}$), NBS ($5.29 \mathrm{~g}, 29.7 \mathrm{mmol}$), and benzoyl peroxide ($0.72 \mathrm{~g}, 0.3 \mathrm{mmol}$) in carbon tetrachloride (30 mL) was refluxed for 3 h under N_{2}. After cooling, the mixture was filtered, and the filtrate was washed with saturated aqueous NaHCO_{3} solution and water, dried, and evaporated in vacuo. The residue was distilled under reduced pressure to give a pale yellow oil ($8.23 \mathrm{~g}, 84 \%$): bp $117-118^{\circ} \mathrm{C} /$ $0.3 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR (90 MHz) $\delta 6.80-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2$ $\mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H})$. This compound was unstable and was used in the next step immediately after distillation.
tert-Butyl (\boldsymbol{D})-2-((4-Hydroxy-3-methoxyphenyl)methyl])-3-oxo-4-decenoate (28). By means of the representative procedure described for 24, compound 28 was prepared from 7 (447 $\mathrm{mg}, 1.0 \mathrm{mmol}$), 27 ($398 \mathrm{mg}, 1.2 \mathrm{mmol}$), and hexanal ($0.14 \mathrm{~mL}, 1.1$ mmol) as a pale yellow oil ($183 \mathrm{mg}, 49 \%$ based on 7): IR (neat) $1730,1690,1670,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.91$ (dt, $J=$ $15.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.18(\mathrm{dt}, J=15.8,1.4$
$\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.08 (dd, $J=1.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.15-2.24$ ($\mathrm{m}, 2 \mathrm{H}$), 1.38 ($\mathrm{s}, 9 \mathrm{H}$), $1.22-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) $\delta 194.2,168.5,149.5,146.2,144.3,130.5,128.7,121.5,114.2,111.6$ 81.7, 59.8, $55.9,33.8,32.5,31.3,27.8,27.7,22.4,13.9$ HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} 376.2248$, found 376.2217 .
(E)-1-(4-Hydroxy-3-methoxyphenyl)-4-decen-3-one (Shogaol) (29). By means of the representative procedure described for 25 , compound 29 was prepared from 28 (50 mg , 0.133 mmol) as a pale yellow oil ($34 \mathrm{mg}, 92 \%$), which showed spectral data consistent with those reported ${ }^{19}$ for shogaol. IR (neat) $3700-3070,1690,1665,1625,1510 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\delta 6.67-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{dt}, J=16.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (bs, 1 H), 3.87 (s, 3 H), 2.81-2.89 (m, 4 H), 2.15-2.24 (m, 2 H), $1.26-1.50(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) б 199.9, 147.9, 146.4, 143.8, 133.2, 130.3, 120.8, 114.3, 111.1, 55.8, $41.9,32.4,31.3,29.8,27.7,22.4,13.9$; MS (EI) $m / z 276$ (M ${ }^{+}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 73.88 ; \mathrm{H}, 8.75$. Found: $\mathrm{C}, 74.00 ; \mathrm{H}, 8.52$.

Acknowledgment. We are grateful to the Material Analytical Center of ISIR, Osaka University, for NMR spectra and microanalyses and to Dr. K. Iio and Mrs. K. Fujiwara, National Institute of Materials and Chemical Research, for HRMS spectra.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra for compounds $6,9 \mathrm{a}-\mathrm{g}, 10 \mathrm{a}-\mathrm{g}, 18 \mathrm{a}, 22,27$, and 28 and ${ }^{15} \mathrm{C}$ NMR spectra for compounds $9 \mathrm{c}, 9 \mathrm{e}, 9 \mathrm{f}, 10 \mathrm{c}, 10 \mathrm{e}$, and 10 f (26 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: - Abstract published in Advance ACS Abstracts, December 15, 1993.
 (1) Present address: Department of Molecular Engineering, National Institute of Materials and Chemical Research, Higashi 1-1, Tsukuba, Ibaraki 305, Japan.
 (2) For some reviews, see: (a) Maercker, A. Org. React. 1965, 14, 289. Johnson, A. W. In Ylid Chemistry; Academic Press: New York, 1966. (b) Gedye, R. N.; Westaway, D. C.; Arora, P.; Bisson, R.; Khalil, A. H. Can. J. Chem. 1977, 55, 1218. For some recent examples, see: (c) Toshima, K.; Tatsuta, K.; Kinoshita, M. Tetrahedron Lett. 1986, 27, 4741. (d) Roush, W. R.; Coe, J. W. Tetrahedron Lett. 1987, 28, 981. (e) Shishido, Y.; Kitabayashi, C. J. Org. Chem. 1992, 57, 2876.
 (3) (a) Lavielle, G. C. R. Acad. Sci. 1970,270, 86. (b) Vedejs, E.;Bershas, J P.; Fuchs, L. F.J. Org. Chem. 1973, 38, 3625. (c) Corey, E. J.; Erickson, B. W. J. Org. Chem. 1974, 39, 821. (d) Shingler, A. H.; Weir, N. G. In Recent Advances in the Chemistry of β-Lactam Antibiotics; Elks, J., Ed.; Chem. Soc. Special Publication No. 28; Chemical Society: London, 1977; p 153.
 (4) (a) Bestmann, H. J. In Comprehensive Organic Synthesis, Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 6, p 171. (b) Bestmann, H. J.;Zimmermann, R. In Methoden der Organishen Chemie; Regitz, M., Ed.; Georg Thieme Verlag: Stuttgart, 1982; Vol. E1, p 616. (c) Zbiral, E.; Berner-Fenz, L. Tetrahedron 1968, 24, 1363. (d) Issleib, K.; Lieschewski, M. J. Prakt. Chem. 1969, 311, 857. (e) Vedejs, E.; Bershas, J. P. Tetrahedron Lett. 1975, 1359. (f) Bestmann, H. J.; Roth, K. Angew. Chem., Int. Ed. Engl. 1981, $20,575$.
 (5) γ-Alkylation of an allylidenephosphorane has been reported: Bogdanovic, B.; Konstantinovic, S. Synthesis 1972, 481.

[^1]: (6) (a) Büchi, G.; Wüest, H. Helv. Chim. Acta. 1971, 54, 1767. (b) Bohlmann, F.; Zdero, C. Chem. Ber. 1973, 106, 3779. (c) Dauben, W. G.; Ipaktschi, J. J. Am. Chem. Soc. 1973, 95, 5088. (d) Dauben, W. G.; Hart, D. J.; Ipaktschi, J.; Kozikowski, A. P. Tetrahedron Lett. 1973, 4425. (e) Padwa, A.; Brodsky, L. J. Org. Chem. 1974, 39, 1318. (f) Vedeje, E.; Bershas, J. P. Tetrahedron Lett. 1975, 1359. (g) Martin, S. F.; Desai, S. R. J. Org. Chem. 1977, 42, 1664. (h) Hatanaka, M.; Yamamoto, Y.; Ishimaru, T. J. Chem. Soc., Chem. Commun. 1984, 1705.
 (7) Hatanaka, M.; Himeda, Y.; Ueda, I. J. Chem. Soc., Chem. Commun. 1990, 526.

[^2]: (8) (a) For excellent reviews, see: Ramaiah, M. Synthesis 1984, 529 Paquette, L. A. Top. Curr. Chem. 1984, 119, 1. Shore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991, Vol. 5, p 1037. (b) Curran, D. P. Synthesis 1988, 417, 489. (c) Tius, M. A.; Astrab, D. P.; Fauq, A. H.; Ousset, J.-B.; Trehan, S. J. Am. Chem. Soc. 1986, 108, 3438. (d) Chamberlin, A. R.; Bloom, S. H.; Cervini, L. A.; Fotsch, C. H. J. Am. Chem. Soc. 1988, 110,4788 . (e) Beak, P.; Burg, D. A. J. Org. Chem. 1989, 54, 1647. (f) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286. (g) Buchwald, S. L.; Lum, R. T.; Fisher, R. A.; Davis, W. M. J. Am. Chem. Soc. 1989, 111, 9113. (h) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336. (i) Hirst, G. C.; Howard, P. N.; Overman, L. E. J. Am. Chem. Soc. 1989, 111, 1514. (j) Mathau, J.J. Chem. Soc., Chem. Commun. 1990, 1264. (k) Ejiri, S.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1992) Fht, Mininary reports of this work, see: Hatanaka, M.; Himeda, Y.; Ueda, I. Tetrahedron Lett. 1991, 32, 4521. Hatanaka, M.; Imashiro, R.; Ueda, I. Chem. Lett. 1992, 2253.
 (10) Beatmann, H.-J.; Saalfrank, R. W. Chem. Ber. 1976, 109, 408.

[^3]: (11) Howe has reported that (3-(ethoxycarbonyl)-2-methyl-2-propenylidene)triphenylphosphorane exists as a equilibrium mixture of the Z and E conformers in a CDCl ${ }_{3}$ solution. The C-1 proton for the major Z-conformer absorbed at lower field (6.58 ppm) than that (2.89 ppm) for the minor E conformer. Howe, R. K. J. Am. Chem. Soc. 1971, 93, 3457.

[^4]: (12) The use of 1 equiv of $\mathrm{C}_{2} \mathrm{CO}_{3}$ reduced the yield to 70% (entry 2) In this case, the reaction mirture became dark green, probably because of the formation of a cyclopentadienyl anion.

[^5]: (13) McLean, S.; Hynes, P. Tetrahedron 1965, 21, 2313, 2843.

[^6]: (14) The phosphorane can be considered to exist as a mixture of two conformers, 13 and 14 , from the fact that 7 produces two isomers ($2 E, 4 E$)18 and ($2 Z, 4 E$)-18 via an alkylation-Wittig reaction sequence. Although we could not separate 13 and 14, these conformers must be in equilibrium (see ref 11).

[^7]: (15) Bestmann, H.-J.; Haberlein, H.; Pils, I. Tetrahedron 1964, 20, 2079. Bestmann, H.-J.; Seng, F.; Shulz, H. Chem. Ber. 1963, 96, 465.
 (16) A similar low-field shift has been observed for the C-I proton of ethyl ($2 E, 4 E$)-2-benzyl-3-methyl-5-phenyl-2,4-hezadienoate: Wiley, R. H.; Crawford, T. H.; Staples, C. S. J. Chem. Soc. 1962, 1535.
 (17) Huet, F.; Lechevallier, A.; Pallet, M.; Conia, J. M. Synthesis 1978, 63.
 (18) Krapcho, A. P. Synthesis 1982, 805, 893.

[^8]: (19) For the isolation and the structure determination of shogaol, see; Nomura, H. J. Chem. Soc. 1917, 769; Sci. Rep. Tohoku Imp. Univ. 1918, 7, 67; 1925, 14, 131. Connell, D. W.; Sutherland, M. D. Aust. J. Chem. 1969, 22, 1033.
 (20) Kochhar, K. S.; Pinnich, H. W. J. Org. Chem. 1984, 49, 3222.
 (21) Brynes, S. D.; Feder, L. R. J. Am. Chem. Soc. 1972, 94, 7016.

[^9]: (23) The preparation of this compound as a cis and trans mixture has been reported: Corey, E. J.; Ghosh, A. K. Tetrahedron Lett. 1987, 28 , 175.

[^10]: (24) Liotta, D.; Zima, G.; Saindane, M. J. Org. Chem. 1982, 47, 1258.

